来自X射线图像的近端股骨骨折的足够分类对于治疗选择和患者的临床结果至关重要。我们依赖于常用的AO系统,该系统描述了将图像分类为类型和亚型的分层知识树根据裂缝的位置和复杂性。在本文中,我们提出了一种基于卷积神经网络(CNN)自动分类近端股骨骨折的近端骨折分类为3和7 AO类。如已知所知,CNNS需要具有可靠标签的大型和代表性数据集,这很难收集手头的应用。在本文中,我们设计了一个课程学习(CL)方法,在这种情况下通过基本的CNNS性能提高。我们的小说配方团结了三个课程策略:单独加权培训样本,重新排序培训集,以及数据采样子集。这些策略的核心是评分函数排名训练样本。我们定义了两种小说评分函数:一个来自域的特定于域的先前知识和原始的自我节奏的不确定性分数。我们对近端股骨射线照片的临床数据集进行实验。课程改善了近端股骨骨折分类,达到了经验丰富的创伤外科医生的性能。最佳课程方法根据现有知识重新排列培训集,从而达到15%的分类提高。使用公开可用的MNIST DataSet,我们进一步讨论并展示了我们统一的CL配方对三个受控和具有挑战性的数字识别方案的好处:具有有限的数据,在类别 - 不平衡下以及在标签噪声存在下。我们的工作代码可在:https://github.com/ameliajimenez/curriculum-learning-prior -unctainty。
translated by 谷歌翻译
Language models have been shown to perform better with an increase in scale on a wide variety of tasks via the in-context learning paradigm. In this paper, we investigate the hypothesis that the ability of a large language model to in-context learn-perform a task is not uniformly spread across all of its underlying components. Using a 66 billion parameter language model (OPT-66B) across a diverse set of 14 downstream tasks, we find this is indeed the case: $\sim$70% of attention heads and $\sim$20% of feed forward networks can be removed with minimal decline in task performance. We find substantial overlap in the set of attention heads (un)important for in-context learning across tasks and number of in-context examples. We also address our hypothesis through a task-agnostic lens, finding that a small set of attention heads in OPT-66B score highly on their ability to perform primitive induction operations associated with in-context learning, namely, prefix matching and copying. These induction heads overlap with task-specific important heads, suggesting that induction heads are among the heads capable of more sophisticated behaviors associated with in-context learning. Overall, our study provides several insights that indicate large language models may be under-trained to perform in-context learning and opens up questions on how to pre-train language models to more effectively perform in-context learning.
translated by 谷歌翻译
End-to-end speech recognition models trained using joint Connectionist Temporal Classification (CTC)-Attention loss have gained popularity recently. In these models, a non-autoregressive CTC decoder is often used at inference time due to its speed and simplicity. However, such models are hard to personalize because of their conditional independence assumption that prevents output tokens from previous time steps to influence future predictions. To tackle this, we propose a novel two-way approach that first biases the encoder with attention over a predefined list of rare long-tail and out-of-vocabulary (OOV) words and then uses dynamic boosting and phone alignment network during decoding to further bias the subword predictions. We evaluate our approach on open-source VoxPopuli and in-house medical datasets to showcase a 60% improvement in F1 score on domain-specific rare words over a strong CTC baseline.
translated by 谷歌翻译
尽管受到监督的深度学习彻底改变了语音和音频处理,但它必须为个人任务和应用程序方案建立专业模型。同样,很难将其应用于仅可用标记数据的方言和语言。自我监督的代表学习方法承诺一个单一的通用模型,该模型将使各种各样的任务和领域受益。这种方法已显示出在自然语言处理和计算机视觉域中的成功,在减少许多下游场景所需的标签数量的同时,达到了新的性能水平。语音表示学习在三个主要类别中也经历了类似的进展:生成,对比和预测方法。其他方法依赖于多模式数据,用于预训练,将文本或视觉数据流与语音混合。尽管自我监督的语音表示仍然是一个新生的研究领域,但它与用零词汇资源的声学单词嵌入和学习密切相关,这两种资源已经进行了多年的积极研究。这篇评论介绍了自我监督的语音表示学习及其与其他研究领域的联系的方法。由于许多当前的方法仅集中在自动语音识别作为下游任务上,因此我们回顾了基准测试的最新努力,以将应用程序扩展到语音识别之外。
translated by 谷歌翻译
自动语音识别(ASR)系统已经发现它们在非常多样化的域中的众多工业应用中使用。由于域 - 特定于域的系统比域名评估的通用对应力更好,因此对内存和计算有效的域适应的需要是显而易见的。特别是,适用用于救援ASR假设的基于参数的基于变压器的语言模型是具有挑战性的。在这项工作中,我们引入域提示,一种方法,该方法列举了少数域令牌嵌入参数以将基于变压器的LM归入特定域。只需少数额外的额外参数,我们通过使用未存在的LM的基线达到7-14%的效率。尽管具有参数效率,但这些改进与具有数亿参数的完全精细调谐模型的改进相当。通过提示,数据集大小,初始化和域的消融,我们提供了在ASR系统中使用域提示的优势的证据。
translated by 谷歌翻译
言语分离的许多最近进步主要针对具有高重叠程度的短音频话语的合成混合物。这些数据集与真实的会话数据显着不同,因此,在这些数据集上培训和评估的模型不会概括到真实的会话方案。使用大多数这些模型用于长形式语音的另一个问题是由于时间频率掩模或置换不变训练(PIT)损耗的无监督聚类,因此是分离的语音段的非明确顺序。这导致准确地缝合用于自动语音识别(ASR)的下游任务的均匀扬声器段。在本文中,我们提出了一种扬声器调节分离器,在直接从混合信号中提取的扬声器嵌入物上训练。我们使用定向丢失训练此模型,该丢失调节分离的段的顺序。使用此模型,我们对真实会话数据的单词错误率(WER)进行了重大改进,而无需额外的重新拼接步骤。
translated by 谷歌翻译
我们介绍BERTPHONE,一个在大型语音上培训的变压器编码器,输出可以用于扬声器和语言识别的语音感知的上下文表示向量。这是通过对两个目标的培训来实现的:首先是通过调整伯特对连续领域的启发,涉及掩蔽输入框架的跨度并重建用于声学表示学习的整个序列;其次,由ASR的瓶颈特征成功的启发是应用于音素标签的序列级CTC损失,用于语音表示学习。我们预留了两种BERTPHONE型号(一个在FISHER上,一个在TED-lium上),并用它们用作两个任务的X-Vector-Sique DNN中的特征提取器。我们达到最先进的$ C _ {\ TEXT {AVG}} $ 6.16就具有挑战性的LRE07 3SEC封闭式语言识别任务。在Fisher和VoxceleB扬声器识别任务上,我们在培训BertPhone向量而不是MFCC时,我们看到扬声器EER的相对减少18%。通常,BERTPHONE在同一数据上优于先前的语音预制方法。我们在https://github.com/awslabs/speech -representations释放我们的代码和模型。
translated by 谷歌翻译